Performance Studies for the LHCb Experiment Marcel Merk NIKHEF Representing the LHCb collaboration 19 th International Workshop on Weak Interactions and Neutrinos Oct 6-11, Geneva, Wisconsin, USA ## B Physics in 2007 - Direct Measurement of angles: - □(sin(2□)) ≈ 0.03 from J/□ Ks in B factories - Other angles not precisely known - Knowledge of the sides of unitary triangle: (Dominated by theoretical uncertainties) - □(|V_{cb}|) ≈ few % error - □(|V_{ub}|) ≈ 5-10 % error - $\square(|V_{td}|/|V_{ts}|) \approx 5-10\%$ error (assuming $\square m_s < 40 \text{ ps}^{-1}$) - In case new physics is present in mixing, independent measurement of can reveal it... # B Physics @ LHC | √s | 14 TeV | |---------------------------------------|---| | L (cm ⁻² s ⁻²) | 2x10 ³² cm ⁻² s ⁻¹ | | \square_{bb} | 500 | | □ _{inel} / □ _{bb} | 160 | - ⊕ Triggering is an issue - \odot All b hadrons are produced: B_u (40%), B_d (40%), B_s (10%), B_c and b-baryons (10%) - Many tracks available for primary vertex - Many particles not associated to b hadrons - 8 b hadrons are not coherent: mixing dilutes tagging #### LHCb: Forward Spectrometer with: - Efficient trigger and selection of many B decay final states - Good tracking and Particle ID performance - Excellent momentum and vertex resolution - Adequate flavour tagging #### Simulation and Reconstruction No true MC info All trigger, reconstruction and selection studies are based on full used anywhere! Pythia+GEANT simulations including LHC "pile-up" events and full pattern recognition (tracking, RICH, etc...) **T**3 RICH1 VELO Sensitivity studies are based on fast simulations using efficiencies and resolutions and from the full simulation #### **Evolution since Technical Proposal** #### Track finding strategy | Long tracks | highest quality for physics (good IP & p resolution) | |--------------------------|---| | Downstream tracks | needed for efficient K _s finding (good p resolution) | | Upstream tracks | lower p, worse p resolution, but useful for RICH1 pattern recognition | | T tracks | useful for RICH2 pattern recognition | | VELO tracks | useful for primary vertex reconstruction (good IP resolution) | #### Result of track finding Typical event display: Red = measurements (hits) Blue = all reconstructed tracks **VELO** 20 ☐ 50 hits assigned to a long track: 98.7% correctly assigned On average: 26 long tracks 11 upstream tracks 4 downstream tracks 5 T tracks 26 VELO tracks #### Ghost rate vs p_T : TT #### **Ghosts:** Negligible effect on b decay reconstruction #### **Experimental Resolution** ## Flavour tag Knowledge of flavour at birth is essential for the majority of QP measurements #### tagging strategy: - opposite side lepton tag (b_l) - opposite side kaon tag (b_c_s) (RICH, hadron trigger) - same side kaon tag (for B_s) - opposite B vertex charge tagging # b_c_l (lepton tag) | Combining tags | tag
[%] | Wtag
[%] | _eff [%] | |-------------------------------|------------|-------------|----------| | $B_d \square \square \square$ | 42 | 35 | 4 | | $B_s \square K K$ | 50 | 33 | 6 | # Efficiencies, event yields and B_{bb}/S ratios Trig | Tot. | Vis | Annual | | | | IXCC. | 501. | mag. | 100 | V 15. | Amnuai | Dis | |---|------|-------|------|------|------|-----------------|--------------|----------------| | | eff. | eff. | eff. | eff. | eff. | BR | signal | from | | Technical Design Report | (%) | (%) | (%) | (%) | (%) | $(10^{\Box 6})$ | yield | bb bkg. | | $\mathbf{B}^0 \ \square \ \square^+\square^\square$ | 12.2 | 91.6 | 18.3 | 33.6 | 0.69 | 4.8 | 26k | < 0.7 | | $B_s \square K^+ K^\square$ | 12.0 | 92.5 | 28.6 | 36.7 | 0.99 | 18.5 | 37k | 0.3 | | $B_s \square D_s \square^+$ | 5.4 | 80.6 | 25.0 | 31.1 | 0.34 | 120. | 80k | 0.3 | | $B_s \square D_s^{\square +} K^{+\square}$ | 5.4 | 82.0 | 20.6 | 29.5 | 0.27 | 10. | 5.4 k | < 1.0 | | $B^0 \square D^{\sim 0}(K\square)K^{*0}$ | 5.3 | 81.8 | 22.9 | 35.4 | 0.35 | 1.2 | 3.4k | < 0.5 | | $B^0 \square J/\square(\square\square) K^0_S$ | 6.5 | 66.5 | 53.5 | 60.5 | 1.39 | 20. | 216k | 0.8 | | $B^0 \square J/\square(ee) K^0_S$ | 5.8 | 60.8 | 17.7 | 26.5 | 0.16 | 20. | 26k | 1.0 | | $B_s \square J/\square(\square\square)\square$ | 7.6 | 82.5 | 41.6 | 64.0 | 1.67 | 31. | 100k | < 0.3 | | $B_s \square J/\square(ee) \square$ | 6.7 | 76.5 | 22.0 | 28.0 | 0.32 | 31. | 20 k | 0.7 | | $\mathbf{B}^0 \ \square \ \square \square$ | 6.0 | 65.5 | 2.0 | 36.0 | 0.03 | 20. | 4.4k | <7.1 | | $B^0 \square K^{*0} \square$ | 9.5 | 86.8 | 5.0 | 37.8 | 0.16 | 29. | 35k | < 0.7 | | $B_s \square \square \square$ | 9.7 | 86.3 | 7.6 | 34.3 | 0.22 | 21. | 9.3k | < 2.4 | Sel . Nominal year = 10^{12} bb pairs produced (10^7 s at L=2 $\square 10^{32}$ cm $\square 2$ s $\square 1$ with \square_{bb} =500 $\square b$) Yields include factor 2 from CP-conjugated decays Det Rec ## **CP Sensitivity studies** CP asymmetries due to interference of Tree, Mixing, Penguin, New Physics amplitudes: #### Mixing phases: - Time dependent asymmetry in B_d->J/□ K_s decays - Sensitive to - Time dependent asymmetry in B_s->J/∏ ∏ decays - Sensitive to #### **Measurements of Angle** - Time dependent asymmetries in Bs->DsK decays. Interference between b->u and b->c tree diagrams due to Bs mixing - Sensitive to □ + □ (Aleksan et al) - Time dependent asymmetries in B->□□ and Bs->KK decays. Interference between b->u tree and b->d(s) penguin diagrams - \triangleright Sensitive to \square \square_d , \square_s (Fleischer) - Time Integrated asymmetries in B-> DK* decays. Interference between b->u and b->c tree diagrams due to D-D mixing - Sensitive to (Gronau-Wyler-Dunietz) ## B_s oscillation frequency: $\square m_s$ - Needed for the observation of CP asymmetries with B_s decays - Use B_s □ D_s□□+ - \square If $\square m_s = 20 \text{ ps}^{\square 1}$ $$\square(\square m_s) = 0.011 \text{ ps}^{\square 1}$$ Can observe >5□ oscillation signal if □m_s < 68 ps□¹</p> well beyond SM prediction Mixing Phases Bd mixing phase using B->J/□ K_s Background-subtracted B⁰ J/ (||)K_S CP asymmetry Angular analysis to separate CP even and CP odd #### Time resolution is important: If $\square m_s = 20 \text{ ps}^{\square 1}$: $[[]_{s}/[]_{s}] = 0.018$ NB: In the SM, $\square_s = \square 2 \square \sim \square 0.04$ ## 1. Angle [from B_s] D_sK (2 Tree diagrams due to Bs mixing) Simultaneous fit of $B_s -> D_s \square$ and $B_s -> D_s K$: - Determination of mistag fraction - Time dependence of background Time dependent asymmetries: $$B_s(B_s) \rightarrow D_s K^+: \underline{\quad} \Box_{T1/T2} + (\Box + \Box_s)$$ $$B_s(B_s) \rightarrow D_s + K = \prod_{T_1/T_2} - (T_s)$$ After one year, if $\square m_s = 20 \text{ ps}^{\square 1}$, $\square \square_s / \square_s = 0.1$, $55 < \square < 105 \text{ deg}$, $\square 20 < \square_{T1/T2} < 20 \text{ deg}$: No theoretical uncertainty; insensitive to new physics in B mixing # 2. Angle [from B⁰] [+] and B_s K+K (b->u processes, with large b->d(s) penguin contributions) Measure time-dependent CP asymmetries in B⁰ □ □ □ □ and B_s K+K decays: $$A_{CP}(t) = A_{dir} \cos([m \ t) + A_{mix} \sin([m \ t))$$ - Method proposed by R. Fleischer: - SM predictions: $$A_{dir}(B^{0} \square^{+}\square^{-}) = f_{1}(d, \square, \square)$$ $$A_{mix}(B^{0} \square^{+}\square^{-}) = f_{2}(d, \square, \square, \square, \square)$$ $$A_{dir}(B_{s}\square^{+}K^{+}K^{\square}) = f_{3}(d', \square', \square)$$ $$A_{mix}(B_{s}\square^{+}K^{+}K^{\square}) = f_{4}(d', \square', \square, \square, \square)$$ d exp(i□) = function of tree and penguin amplitudes in B⁰□ □+□□ d' exp(i□') = function of tree and penguin amplitudes in B_s ∏ K+K□ Assuming <u>U-spin flavour symmetry</u>(interchange of d and s quarks): □ 4 measurements (CP asymmetries) and∃ unknown (□ d and □) □ can solve for □ # 2. Angle \square from $B^0\square$ $\square^+\square^\square$ and $B_s\square$ K^+K^\square (cont.) - Extract mistags from B⁰ K+□ and B_s □ □+K□ - \square Use expected LHCb precision on \square_d and \square_s blue bands from $B_s \square K^+K^\square (95\%CL)$ red bands from $B^0 \square \square^+\square (95\%CL)$ ellipses are 68% and 95% CL regions 1.2 (for $\square_{nput} = 65 \text{ deg}$) If $\Box m_s = 20 \text{ ps}^{\Box 1}$, $\Box \Box_s / \Box_s = 0.1$, d = 0.3, \Box = 160 deg, 55 < \Box < 105 deg: $\square(\square) = 4\square 6 \deg$ U-spin symmetry assumed; sensitive to new physics in penguins # 3. Angle [] from $B^0[]$ D^0K^{*0} and $B^0[]$ D^0K^{*0} (Interference between 2 tree diagrams due to D0 mixing) Application of Gronau-Wyler method to D⁰K^{*0} (Dunietz): - Measure six rates (following three + CP-conjugates): - No proper time measurement or tagging required - □ Rates = 3.4k, 0.6k, 0.5k respectively (CP-conj. included), with B/S = 0.3, 1.4, 1.8, for □=65 degrees and □=0 ## Measurement of angle [] New Physics? ## Systematic Effects #### Possible sources of systematic uncertainty in CP measurement: - Asymmetry in b-b production rate - Charge dependent detector efficiencies... - can bias tagging efficiencies - can fake CP asymmetries - CP asymmetries in background process #### **Experimental handles:** - Use of control samples: - Calibrate b-b production rate - Determine tagging dilution from the data: e.g. $$B_s->D_s\square$$ for $B_s->D_sK$, $B->K\square$ for $B->\square\square$, $B->J/\square K^*$ for $B->J/\square K_s$, etc - Reversible B field in alternate runs - Charge dependent efficiencies cancel in most B/B asymmetries - Study CP asymmetry of backgrounds in B mass "sidebands" - Perform simultaneous fits for specific background signals: e.g. $$B_s -> D_s \square$$ in $B_s -> D_s K$, $B_s -> K \square \& B_s -> K K$, ... #### Conclusions - LHC offers great potential for B physics from "day 1" LHC luminosity - LHCb experiment has been reoptimized: - Less material in tracking volume - Improved Level1 trigger - Realistic trigger simulation and full pattern recognition in place - Promising potential for studying new physics